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1. Background: Motivation

P ⊆ BPP ⊆ BQP ⊆ PSPACE

• Prime factor (superpolynomial speedup)

 Classical : 2𝑂(𝑛1/3)  
 Shor[1]: 𝑂(𝑛3)

• Database searching (polynomial speedup)
 Classical: 𝑂(𝑛) 
 Grover[2]:  𝑂( 𝑛)

Discrete logarithms, quantum simulation, system of linear 
equation...
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[1] Peter Shor "Algorithms for quantum computation: discrete logarithms and 

factoring." Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994.
[2] Lov K. Grover “Quantum mechanics helps in searching for a needle in a haystack.”

Physical Review Letters, 79(2):325-328, 1997.



Quantum Computing today

• Speed of atomic operations 
High performance computing[3]

Fugaku(2020) 
 442 PFLOPS
 clock rate for a processor           2.2 GHz

Quantum Computing (superconducting + optical interconnect)[4]
 Single qubit gate                30 ns  (33 MHz) 
 Two qubit gate       60 ns (16 MHz) 
 Measurement  240 ns (4 MHz)
 Entanglement generation for remote nodes   1000 ns (1 MHz)

→𝟏𝟎𝟑 speedup is required!
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[3] 安里彰 「コデザインによるスーパーコンピュータ富岳プロセッサの開発」電子情
報通信学会基礎・境界ソサイエティ Fundamentals Review (2022)
[4] Shin Nishio and Ryo Wakizaka. "InQuIR: Intermediate Representation for Interconnected 
Quantum Computers." arXiv preprint arXiv:2302.00267 (2023).



Fault-tolerant quantum computing

Qubit lifetime may saturate, but # of qubits is scaling
→ Fault-tolerant quantum computing may work

6
[5] Irfan Siddiqi,  "Engineering high-coherence superconducting qubits." Nature Reviews Materials 6.10 (2021): 875-891.
[6] Maurizio Di Paolo Emilio, “Current Status and Next in Quantum Computing.” EETimes (2022)

Lifetime of qubits [5] # of qubits in a processor [6]



Fault-tolerant quantum computing

Qubit lifetime may saturate, but # of qubits is scaling
→ Fault-tolerant quantum computing may work
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[7] Google Quantum AI and Collaborators, Quantum error correction below the surface code threshold. arXiv:2408.13687

• Error suppression factor
Λ = 2.14 ± 0.02

when increasing the code distance by two

• Real-time decoding
Latency of 63 μs at distance-5 up to a 
million cycles, with a cycle time of 1.1 μs

• Longer lifetime for logical qubit
2.4 ± 0.3 times better than the lifetime 

of physical qubits

From [7]



FTQC Overheads
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Fault-tolerant Quantum Computing
Space overhead (100k qubits)
•  All the computation processes are on a 𝒓 times redundant code 

space where 𝑟 = 𝑘/𝑛
• Cost of universality 

Magic state distillation (Tri-orthogonal codes, 3D color codes 
etc), code-switching, Concatenation, etc

Time overhead (days)
• Repetitive Syndrome measurement → Decoding → Correction
• Fault-tolerant Logic

Quantum Circuit

𝐺1

𝐺2

𝐺3
Qubit 1

Qubit 2

Qubit 3

time

Fault-tolerant manner
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Computational resources

(Logical) Quantum Circuit 

(Discrete-gate) Quantum Circuit

Physical 

logical 

Physical Quantum Circuit

Quantum Assembly-like Language

Program analysis
and 

optimization

Encoding Decoding

Lattice Surgery, Defect Braiding, 
Code-switching,  Magic state 
distillation ...

Physical Control

Universal gate set  {H, T, CX}

Quantum Algorithm
Solovay-Kitaev Compilation

High-level quantum program
MCT, For, While, If, 𝜆,  Classical Computation

Language and decoding algorithms are core of 
quantum computing systems ! 
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Computational resources

(Logical) Quantum Circuit 

(Discrete-gate) Quantum Circuit

Physical 

logical 

Physical Quantum Circuit

Quantum Assembly-like Language

Program analysis
and 

optimization

Encoding Decoding

Lattice Surgery, Defect Braiding, 
Code-switching,  Magic state 
distillation ...

Physical Control

Universal gate set  {H, T, CX}

Quantum Algorithm
Solovay-Kitaev Compilation

High-level quantum program
MCT, For, While, If, 𝜆,  Classical Computation

Language and decoding algorithms are core of 
quantum computing systems ! 

IEEE TQE 4 (2023): 1-7
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2. System software

There are many good codes and its fault-tolerant logic, but some 
of them are not well-defined in low-layer 

Formalize the circuit optimization rules which preserve unitary
↓
Check the computational complexity 
↓
Find an easy case, efficient solver, approximation, etc. 
↓
Introduce intermediate representation and then optimize
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For reducing computational resources

What I can do as a computer scientist

0. Is the layer structure appropriate?

1. Find a bottleneck

2. Ease it

→ go back to 0
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Logical Circuit

• Circuit optimization of logical circuit

Lattice surgery and defect braiding are candidates for the fault-
tolerant logic for surface code computing

For the optimization problem of the logical quantum circuit,
• It is NP-hard for lattice surgery in general [8]
• The problem in a formal way has not been defined for defect 

braiding
→ so we did!

[8] Daniel Herr, Franco Nori, and Simon J. Devitt. "Optimization of lattice 

surgery is NP-hard." Npj quantum information 3.1 (2017): 35.
[9] K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, 
Hardness of braided quantum circuit optimization in the surface code,  
IEEE Transactions on Quantum Engineering 4, 1-7



Computational complexity of DB circuit optimization
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Defect braiding on surface codes realize two qubit logical interaction

Topological circuit

K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, 
Hardness of braided quantum circuit optimization in the surface code,  
IEEE Transactions on Quantum Engineering 4, 1-7

IEEE TQE 4 (2023): 1-7
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Enough margin between gates 

𝜋: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 → {𝐴, 𝐵, 𝐸, 𝐶, 𝐷}

Gates ℛ: 1 = 𝐵, 𝐶, 𝐷  2 = 𝐶, 𝐷  3 = {𝐴, 𝐵}
Partial order: 2 ≻ 1, 3 ≻ 1

Depth optimization with permutations of qubits (Min-Braiding)

2D simplified circuit

Computational complexity of DB circuit optimisation

K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, 
Hardness of braided quantum circuit optimization in the surface code,  
IEEE Transactions on Quantum Engineering 4, 1-7

IEEE TQE 4 (2023): 1-7
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Computational complexity of DB circuit optimisation

We have proven that:
 NP-completeness of Min-Braiding optimization
How?
• Assume that there exists an algorithm 𝒜 that solves Min-

Braiding efficiently.
• If it can be solved using 𝒜 for any instance of the known hard 

problem 𝒫, Min-Braiding is at least more difficult than 𝒫.
• We used PlanarRectLinear 3SAT (subset of 3SAT)

K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, 
Hardness of braided quantum circuit optimization in the surface code,  
IEEE Transactions on Quantum Engineering 4, 1-7

𝜙 = ¬𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ ¬𝑥4

c1 = ¬𝑥1 ∨ 𝑥2 , 𝑐2 = 𝑥2 ∨ 𝑥3 , 
𝑐3 = 𝑥2 ∨ 𝑥3 ∨ ¬𝑥4

𝑥1, 𝑥2, 𝑥3, 𝑥4 = (0,0,1,0) 

IEEE TQE 4 (2023): 1-7
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Optimizing DB circuit with ZX calculus

[10] Michael Hanks, Marta Estarellas, William Munro & Kae Nemoto(2020). Effective compression of 
quantum braided circuits aided by ZX-calculus. Physical Review X, 10(4), 041030.

Fig. from [10]
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2. Modular architecture

[11] David  Awschalom, et al. "Development of quantum interconnects (quics) for next-

generation information technologies." PRX Quantum 2.1 (2021): 017002.

[12] Ying Li and Simon C. Benjamin. "Hierarchical surface code for network quantum 

computing with modules of arbitrary size." Physical Review A 94.4 (2016): 042303.

[13] Johannes Borregaard et al. "Efficient quantum computation in a network with 

probabilistic gates and logical encoding." Physical Review A 95.4 (2017): 042312.

Fig. 1 in [12] Fig. 3 in [13]

• photonic system is regarded as among the best candidate

Processor 1 Processor 2

Quantum channel (interconnect [11])
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Quantum Error Correction Code

Shor’s 9-qubit code

Steane’s 7-qubit code

LMPZ 5-qubit code

Reed-Solomon code

Hamming code

LDPC code
Surface code

Block Codes

Convolutional code

Linear Codes

Bosonic code

Classical Codes
Quantum Codes

Stabilizer codes

CSS codes

Quantum Reed-Solomon code
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Optical Systems

Optical Switch

OS

Time-bin

• Quantum Multiplexing[14]: By using multiple degree of freedom, one photon can be 
used as high-dimensional qudit. e.g.   polarization and timebin

 ۧ|𝑉𝐿 , ۧ|𝑉𝑆 , ۧ|𝐻𝐿 , ۧ|𝑉𝑆 :  4-dim qudit 

Polarized Beam SplitterPolarization

• Photon is sometimes lost, which is an obstacle to information processing(called loss error).

• Polarization 

Treating the degrees of freedom of photons as qubits/qudits

• Timebin

[14]Nicolò Lo Piparo, William J. Munro, and Kae Nemoto. 
"Quantum multiplexing." Physical Review A 99.2 (2019): 022337.
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Timebin Encoding 

• Timebin encoding 
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Quantum Multiplexing

Quantum Multiplexing is a technique for exploit multiple 
degrees of freedom of photon.
• It is known that QM can reduce the resource of QRS code

• single photon sources[22]
• # of CX gates for Toffoli gates[23]

[22] Nicolò Lo Piparo, et al. "Resource reduction for distributed quantum information 
processing using quantum multiplexed photons." Physical Review Letters 124.21 (2020): 
210503.
[23] Nicolò Lo Piparo, et al. "Aggregating quantum networks." Physical Review A 102.5 
(2020): 052613.
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Quantum Multiplexing

Hao-Cheng Weng, Chih-Sung Chuu, 
Implementation of Shor's Algorithm with a Single Photon in 32 Dimensions 
arXiv:2408.08138
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(Classical)Reed-Solomon code

• Errors are counted with respect to symbols (corresponds to the 
elements of Galois Field)  

• Maximum distance separable code (satisfy singleton bound)
𝑑𝑚𝑖𝑛 = 𝑛 − 𝑘 + 1

• Be able to correct 𝑡 = 𝑛 − 𝑘 loss errors
• good for optical channel 

Applications
 CD,DVD, QR, Satellite communication 
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Quantum Reed-Solomon code

• Good at correct loss errors for qudits
• Application: quantum repeaters[15]

[15] Sreraman Muralidharan et al. "One-way quantum repeaters with quantum Reed-
Solomon codes." Physical Review A 97.5 (2018): 052316.
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Summary of Introduction 

• QEC is a fundamental tool for Quantum Information Processing 

• The implementation of quantum communication with optics is 
progressing.

• there are still problems such as loss error.

• Quantum Reed-Solomon code is efficient for the loss errors
• Errors are counted with respected to symbols(element of GF)  

The cost of QEC including the encoding circuit makes their 
implementation quite challenging.
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(Classical) Reed-Solomon Code 

Reed-Solomon code over 𝐺𝐹 𝑝𝑘  defined as follows:
where 𝑝 is prime number and 𝑘 is positive integer

1. Let 𝛼 be the primitive element of 𝐺𝐹(𝑝𝑘)

𝐺𝐹 𝑝𝑘 = {0,1, 𝛼, 𝛼2, … , 𝛼𝑝𝑘−2}

 (Also define addition/multiplication over GF by using minimal 
polynomial) 

2.  Input information is treated as the coefficients of polynomial
 𝑎 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯ 𝑎𝑘−1𝑥𝑘−1

3. Generator polynomial is given as 
  𝑔 𝑥 = (𝑥 − 𝛼𝑙)(𝑥 − 𝛼𝑙+1) ⋯ (𝑥 − 𝛼𝑙+𝑑−2)  
 where integer 𝑙 ≥ 0

4. Calculate codewords 𝑤 𝑥
𝑤 𝑥 = 𝑎 𝑥 𝑔(𝑥)



It is possible to construct  Quantum Codes 
from Reed-Solomon code by using CSS 
construction.

e.g. construction from [19]
𝒞1 = 𝑑, 𝑘, 𝑑 − 𝑘 + 1 𝑑

𝒞2 = 𝒞1
⊥ = 𝑑, 𝑑 − 𝑘, 𝑘 + 1 𝑑

𝒬𝒞1,𝒞2
= 𝑑, 2𝑘 − 𝑑, 𝑑 − 𝑘 + 1

𝑑
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Quantum Reed-Solomon code [18]

[18] Markus Grassl, Willi Geiselmann, and Thomas Beth. "Quantum reed-solomon 

codes." International Symposium on Applied Algebra, Algebraic Algorithms, and Error-

Correcting Codes. Springer, Berlin, Heidelberg, 1999.

[19]Muralidharan Sreraman, et al. "One-way quantum repeaters with quantum Reed-
Solomon codes." Physical Review A 97.5 (2018): 052316.

physical logical distance dim qudit
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Proposal: Encoding circuit (e.g.  5,1,3
5
 code)

5-dim qudit representation 

SUM gate

• new efficient implementation of the encoding circuit 

Phys. Rev. A 107, 032620
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Operations for 𝑑-dimensional Qudit

Generalized 𝐶𝑋 gate[20]

Generalized  Hadamard gate[21]

[20] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. 
Physical Review A,64(1):012310, 2001.
[21] Markus Grassl, Martin Rötteler, and Thomas Beth. "Efficient quantum circuits for non-
qubit quantum error-correcting codes." International Journal of Foundations of Computer 
Science 14.05 (2003): 757-775.

Phys. Rev. A 107, 032620



Required number of SUM gate for 𝑑, 1,
𝑑+1

2
𝑑

 Quantum 

Reed-Solomon Code over 𝐺𝐹(𝑑)
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Result: Required resources

𝑑2 + 𝑑 − 4

2

Phys. Rev. A 107, 032620
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Proposal: implementation of SUM Gate

Represent 𝑝-dim qudit over 𝑘-qubits system (2𝑘 ≥ 𝑝) where 
𝑝 is prime number

Number of gates 
• RCA part

𝐶𝐶𝑋 + 𝐶𝑋 +  (𝑘 − 1)(3𝐶𝐶𝑋 + 2𝐶𝑋)

Numbers of Ancillae qubits
 𝑘 + 2(𝑑 − 1) qubits

Ripple Carry  Adder Modulo  

e.g. SUM gate for 𝑝 = 5  (3-qubit mod 5 adder)
000
001
010
011
100

0
1
2
3
4

qudit qubit

• Modulo part

Phys. Rev. A 107, 032620
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Multiplexing reduction for the Toffoli gates [23]

CCX gate

(Toffoli gate)
CX gate + OSs

[23] Nicolò Lo Piparo, et al. "Aggregating quantum networks." Physical Review A 102.5 
(2020): 052613.

L

S
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Proposal: Multiplexing decomposition for the 𝐶𝑘𝑋 gate

Reduce # of control qubits by using OS

𝐶𝑘𝑋

𝐶𝐶𝑋

Phys. Rev. A 107, 032620
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Comparison: General Decomposition[24] with QM Decomposition

𝐶𝑘𝑋 → 4 𝑘 − 2 𝐶𝐶𝑋 
𝐶𝐶𝑋 → 6𝐶𝑋 + 2𝐻 + 3𝑇† + 5𝑇

[24]  A. Barenco, C. H. Bennett, R. Cleve, D. P. Di- Vincenzo, N. Margolus, P. Shor, 
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum 
computation. Physical Review A, 52(5):3457, 1995. 

e.g.

Phys. Rev. A 107, 032620
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Result: Multiplexing Optimization for SUM gates

Proposal: QM decomposition

General decomposition

Phys. Rev. A 107, 032620
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Result: Multiplexing Optimization for the Encoder

General decomposition

Proposal: QM decomposition

Phys. Rev. A 107, 032620
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Result: The cost of SUM gate

Modulo part

Proposal: QM decomposition

𝑑 ≪ 2𝑘

𝑑 ≈ 2𝑘

𝑑 ≈ 2𝑘

Gray line ：d = 2𝑘

Phys. Rev. A 107, 032620
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Result: Multiplexing Optimization Ratio 

Gray line ：dim = 2𝑘

Phys. Rev. A 107, 032620
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Conclusion for QM for QRS 

• We apply QM to the implementation of the encoding circuit 
of the QRS codes

• In this case we show that 𝐶𝑘𝑋 gates can be reduced into a 
single 𝐶𝑋 gate by using  linear optical elements.

• Therefore, the total number of 𝐶𝑋 gates require to 
implement 𝑑-dimensional QRS codes is drastically reduced 
(except when 𝑑 = 2𝑚).

• We believe that this can also be applied to other systems such 
as Grover’s search and discrete time quantum walks, leading 
to a much more feasible implementation of such technology

Phys. Rev. A 107, 032620
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Future work

• Evaluation of other resources (OSs)
• Correction/Decoder circuit
• Comparison with other circuit optimization methods

Applications
• Other CSS codes and more general codes
• Any system that requires SUM gates

Phys. Rev. A 107, 032620



QM and surface codes
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Quantum Chip

Hybrid codes system may introduce overhead...

SC, atom, etc.

Quantum Interconnect
(Optical fiber and repeaters)

M2O converter

Quantum Chip Quantum 
Interconnect

Case 1 Topological Codes MDS codes(e.g. QRS)

Case 2 Topological Codes



Erasure channel
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𝜌 → 1 − 𝜀 𝜌 + 𝜀 ۧ|𝑒  |𝑒ۦ

where ۧ|𝑒 ∉ ℋ2

Erasure error

Erasure(photon loss) is dominant in the optical systems

→We can detect erasure without destruction!

0. detect erasure errors
1. replace the erased qubit with a mixed-state 

𝕀

2
=

1

4
(𝜌 + 𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍)

2. stabilizer measurement 
3. Decoding (calculate syndrome and correct)



Proposal  Quantum multiplexed SC comm

44

① ② ③ ④ ⑤

arXiv:2406.08832



Erasure channel
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𝜌 → 1 − 𝜀 𝜌 + 𝜀 ۧ|𝑒  |𝑒ۦ

where ۧ|𝑒 ∉ ℋ2

Erasure error

• Erasure(photon loss) is dominant in the optical systems

→We can detect erasure without destruction!



Correction procedure for erasure errors
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𝜌 → 1 − 𝜀 𝜌 + 𝜀 ۧ|𝑒 |𝑒ۦ

0. detect erasure errors
1. replace the erased qubit with a mixed-state 

𝕀

2
=

1

4
(𝜌 + 𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍)

2. stabilizer measurement 
3. Decoding (calculate syndrome and correct)
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Erasure Correction with Surface Codes

[25] N. Delfosse and G. Zémor, Linear-time maximum likelihood decoding of surface codes over 
the quantum erasure channel, Physical Review Research 2, 033042 (2020)

Preprocessing

Peeling decoder [25]



Proposal: Three scenarios for QM Comm

Suppose we apply quantum multiplexing with 𝑚 qubits per 
one photon, we can send

1.  𝑚 different code words with the same # of photons
2. 𝑚 × 𝑚 bigger code words with the same # of 

photons

3.  Original code words with 
1

𝑚
 photons

48

arXiv:2406.08832



Scenario (A) Multiple Code Words

Sending 𝑚 code words

• 𝑚 times better throughput
• No classical correlation inside a code

49

arXiv:2406.08832



Scenario (B) Large Code Word

Sending bigger codes
• Large code distance 
• Encoding 𝑚 qubits in a photon 
→ correlated Pauli errors

50

arXiv:2406.08832



Scenario (B) Large Code Word

Sending bigger codes
• Large code distance 
• Encoding 𝑚 qubits in a photon 
→ correlated Pauli errors

Benefit from the large distance is dominant  

51

arXiv:2406.08832



Scenario (C) 

Sending same codes with fewer photons

• 𝑚 times better throughput
• Encoding 𝑚 qubits in a photon 
→ Classical correlation inside codewords

52

arXiv:2406.08832



Scenario (C): Degradation caused by QM

• There is a degree of freedom in the assignment of 
qubits to photons 

→ We propose 5 assignment strategies
53

arXiv:2406.08832



Assignment strategy

The impact of introducing correlation on the performance 
is not trivial.

• Can negative effects of correlation be avoided?
• Is it possible to achieve better performance than no-

multiplexing with reducing number of photons?

54

arXiv:2406.08832



Assignment strategies for QM
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(i) Minimum distance

(ii) Maximum distance

Maximizing distance may help!

1

0

4

7

3

6

5

2

1

0

4

7

3

6

5

2

arXiv:2406.08832



Assignment strategies for QM (2)
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For photons:

Threshold 

 𝑇 =
𝑑

2
− 1

Pick 1st qubit randomly

While # of qubits in the photon < 𝑚:

  Pick a candidate qubit 𝑐 randomly.

  if 𝑐 has distance > 𝑇  from nearest 

 member: 

   add 𝑐 to the photon

  if there is no candidate:

   update 𝑇 as 𝑇 − 1

(iv) Random + Thresholds 

(iii) Uniformly random

Inspired by interleaving for classical error correction codes

arXiv:2406.08832



Comparison on assignment strategies
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• Randomness and maximizing the distance has positive effect

𝑚 = 2

arXiv:2406.08832



Assignment strategies for QM
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(v) Stabilizer based

arXiv:2406.08832
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• May be useful when using biased code or error is biased

𝑚 = 4

arXiv:2406.08832

Assignment strategies for QM



Scaling the code
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If 𝑚 ≪ 𝑑, classical correlation can be ignored

arXiv:2406.08832
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Hypergraph Product (HGP) Codes

• Asymptotically finite rate 
• Can be regarded as Generalized surface code 

Product of two ring graphs
With random assignment

arXiv:2406.08832
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Non-ML Decoder

Maximally-likelihood Decoder for HGP (Gaussian elimination )
  𝑂(𝑛3)

Combined decoder (peeling + pruned peeling + VH)[26]
  𝑂 𝑛2  or 𝑂(𝑛1.5) for probabilistic version

[26]N. Connolly, V. Londe, A. Leverrier, and N. Delfosse, “Fast erasure decoder 
for hypergraph product codes,” Quantum, vol. 8, p. 1450, Aug. 2024, doi: 
10.22331/q-2024-08-27-1450.

Fig from [26]
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Decoding stopping set

Error Recovery Failure (ERF) 
• Decoding Failure (DF)
• Logical Error (LE)

Combined decoder[26] runs in 𝑂(𝑛2)
Two types of stopping set  
• Stabilizer stopping set 

All qubits in support of the x/z stabilizer
• Classical stopping set
 entire low or column: classical codes

Z

X

[26] Nicholas Connolly, et al. "Fast erasure decoder for a class of 
quantum LDPC codes." arXiv preprint arXiv:2208.01002 (2022).
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Hypergraph Product (HGP) Codes

• Calculate distance is not as easy as surface codes
• Decoder-aware assignment strategies 

• Without proper placement, the effect of degradation increases a lot with 𝑚
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Hypergraph Product (HGP) Codes

𝑚 = 4 𝑚 = 16

[[512, 8]] HGP codes (16 × 16, 16 × 16)

(v) can achieve the same performance as without multiplexing 
while significantly reducing the resources required

arXiv:2406.08832
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Hypergraph Product (HGP) Codes

[[320, 82]] HGP codes (16 × 16, 8 × 8)

(v) is even better than no-multiplexing!

𝑚 = 8

arXiv:2406.08832



Summary
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 QM reduce required number of resouces
• Number of gates → fast encoding 
• Number of photon → Increase the throughput

QM may introduce a correlation on errors in qubits
• It may increase the logical error rate

↑could be dealt with assignment strategies
• Code structure aware (Surface codes) 
• Decoder aware (HGP codes)

 
• Other assignment strategy
• Threshold behavior
• Efficiency of conversion of qubits to photons

arXiv:2406.08832
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3-2 Programming Language and IR

High-level Programming Language 

Intermediate Representation

Quantum Architecture

Program analysis
and 

optimization
Lowering (Compiling)

Abstraction

arXiv:2302.00267
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Merits of formally defined Language

1. Allow us to discuss the behavior of programs
→ Program verification (guarantee that a program has some 
property during execution)

2. Modeling of computation in an appropriate way 
→ More sophisticated program analysis, optimization, and  intuitive 
structure of codes



Setting 

• Multiple quantum processors linked via quantum 
channels to realize scalable quantum computers

• Remote operations are achieved by using quantum 
channels

70

3-2 Formal language for modular arch
arXiv:2302.00267



• Many quantum algorithms are designed for 
monolithic architectures

• It is difficult to implement quantum circuits with existing 
frameworks (e.g. QMPI [27])

71

[27] T. Häner, D. S. Steiger, T. Hoefler, and M. Troyer, “Distributed quantum computing with QMPI”

Compilation for circuit distribution
arXiv:2302.00267



• Distributed quantum compilers [28, 29] map 
quantum circuits to interconnected architectures

72

[28] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, “Compiler design for distributed 
quantum computing”
[29] O. Daei, K. Navi, and M. Zomorodi-Moghadam, “Optimized Quantum Circuit Partitioning”

  

  

  

  

  

 

 

 

 
Compile

  

  

  

  

  

 

 

 

            

           

remote operation

Compilation for circuit distribution
arXiv:2302.00267
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How to define a typed IR

1. Instruction set and syntax

2. Semantics

3. Type system

Universality
Physical constraints
High-level or low-level? 

How does the program behave?
Operational semantics, 

What kind of property would be 
required for “safe execution”?



InQuIR: programming language

74

arXiv:2302.00267

Typing rules for qubit usage analysis

Flow
1. Define the syntax 2. Define (operational) semantics

3. Fast static analysis with type system!

How the runtime state transitions

e.g.
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Introducing a quantum programming language to distributed 
quantum compilers has several advantages:

• The semantics of quantum programs are formally 
defined,
so resource consumption can be estimated precisely

• Undesirable behaviors can be detected by using 
methods of
static program analysis (e.g. type systems, abstract 
interpretation)

• Different quantum compilers can use the same program 
format

Programming language for modular architecture
arXiv:2302.00267



• We propose InQuIR, an Intermediate Representation 
for Interconnected Quantum Computers (First formal 
language for distributed QC)

76

Contribution: InQuIR

InQuIR program

Quantum Programs

Resource 
Estimation

Verification

Circuit 
Partitioning

Qubit mapping

Transpilere.g. OpenQASM

(Additional)
Optimization

Arch. information Scheduling

Check whether a given InQuIR program
can be executed safely on the architecture

arXiv:2302.00267

①

②③
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Sending/Receiving a qubit data by 
quantum teleportation consuming an 

entanglement 𝒙𝟐

Generate an entanglement with a 
processor 𝒑, and give it a label 𝒙

Applying a Remote CX gate
(in the Control/Target side) consuming 

an entanglement 𝒙𝟐

Each processor 𝒑 has a sequence of 
instructions 𝒆𝒑 to execute  

The (Brief) Syntax of InQuIR
arXiv:2302.00267
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Processor 1 (p1):
q0, q1 = init();
q2 = genEnt p2;
RCXC q0 via q2;
q2 = genEnt p2;
QSEND q1 via q2;

Processor 2 (p2):
q0’, q1’ = init();
q2’ = genEnt p1;
RCXT q0’ via q2’;
q2’ = genEnt p1;
q1’ = QRECV via 
q2’;
CX q0’ q1’;

Processor 1 Processor 2

Applying CX gates remotely in InQuIR
arXiv:2302.00267

Concurrent Processes
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Processor 1 (p1):
q0, q1 = init();
q2 = genEnt p2;
RCXC q0 via q2;
q2 = genEnt p2;
QSEND q1 via q2;

Processor 2:
q0’, q1’ = init();
q2’ = genEnt p1;
RCXT q0’ via q2’;
q2’ = genEnt p1;
q1’ = QRECV via 
q2’;
CX q0’ q1’;

1. RCX strategy
• Use RCXC/RCXT

2. MOVE strategy
• Use QMOVE/QRECV

Two (toy) Compilation Strategies 
arXiv:2302.00267

• #(communication depth) [30] 
circuit name RCX strategy MOVE strategy

adder_63 304 334

life_238 5026 7220

[30] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, “Compiler design for 
distributed quantum computing”



Network utilization analysis and visualization

80

Evaluation of compilation strategies 
by the same indicators (e.g. # of instructions, depth)

Estimating the hardware topology required for apps
→provide guidelines for hardware design

Future works?
• Introduction of new metrics for evaluation
• QEC and  FT logics
• Find the “bugs” you want to verify with type system
• (Implementations...)

arXiv:2302.00267
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• We can statically check the “safety” of InQuIR 
programs by static program analysis

• e.g. the qubit exhaustion and deadlocks do not occur 

• A type system can be formalized to analyze qubit 
utilization

Typing rules for qubit usage analysis

Verification of InQuIR
arXiv:2302.00267
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• Case study: deadlock free

Verification of InQuIR

Node A

Node BNode C

Waiting relation is cyclic
→ stack!

arXiv:2302.00267

Path blocking for entanglement swappingProcess 1

Process 2



• Extending primitive operations of InQuIR to enable 
sophisticated optimizations

• RCXC/RCXT should be decomposed to enable quasi-
parallelism [31]

• Dealing with nondeterministic protocol
• Entanglement purification / feed-forward

• Seeking new metrics to monitor resource usage

83

[31] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati, and A. S. 
Cacciapuoti, “Optimized compiler for distributed quantum
computing”

Ongoing & Future Work
arXiv:2302.00267
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4. Towards large-scale quantum computer 

For the implementation of useful & scalable FTQC 

• Topological codes → High-rate LDPC codes

符号 k d degree

2D surface codes 𝑂(1)
𝑛

1
2

4

2D hyperbolic surface codes Ω(𝑛) log(𝑛) 𝑂(1)

3D surface codes 𝑂(1)
𝑛 log 𝑛

1
2

𝑂(1)

Hypergraph product codes Ω(𝑛)
𝑛

1
2

𝑂(1)

Bravyi, Sergey, et al. "High-threshold and low-overhead 

fault-tolerant quantum memory." Nature 627.8005 
(2024): 778-782.

Bivariate bicycle
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4. Towards large-scale quantum computer 

overhead  for magic state distillation scales as  𝑂(log𝛾(1/𝜖))

Open Question
Is there any quantum error correction codes with 𝛾 → 0 

where  𝛾 = log𝑑
𝑛

𝑘
 ?

Yes! There exist![32-35]

[32] Adam Wills, Min-Hsiu Hsieh, and Hayata Yamasaki.
Constant-Overhead Magic State Distillation, August 2024.
arXiv:2408.07764 [quant-ph].
[33] Louis Golowich and Venkatesan Guruswami. Asymptotically
Good Quantum Codes with Transversal Non-Clifford Gates,
August 2024. arXiv:2408.09254 [quant-ph].
[34] Quynh T. Nguyen. Good binary quantum codes with transversal
CCZ gate, August 2024. arXiv:2408.10140 [quant-ph].
[35] Thomas R. Scruby, Arthur Pesah, and Mark Webster. 
Quantum Rainbow Codes, August 2024. arXiv: 2408.13130 [quant-ph]

8/14

8/17

8/19

8/23
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4. Towards large-scale quantum computer 

Quantum Error Correction Codes & Hardware
↓
Logical Gate Implementation & Microarchitecture 
↓
Domain-specific Language 
↓
Compilation, Resource Analysis, and Verification
↓
Architecture 
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Summary
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Summary

• Quantum computing systems include the classical 
computer systems
• Defect braiding circuit optimization 

• Modular architecture may be an efficient 
implementation of large-scale FTQC systems
• Multiplexing can reduce resources for 

communication
• Formal language and intermediate representation 

play an important role in program optimization and 
analysis

Phys. Rev. A 107, 032620, arXiv:2406.08832

arXiv:2302.00267

Phys. Rev. A 107, 032620

Thank you! 



CSS Code [16,17]

89

𝒞1 = [𝑛, 𝑘1, 𝑑1] 
𝒞2 = [𝑛, 𝑘2, 𝑑2] ({0} ⊂ 𝒞2 ⊂ 𝒞1 ⊂ 𝔽2

𝑛, 𝑘2 < 𝑘1)

It is possible to define coset of 𝒞2 about 𝒞1 since 𝒞2 ⊂ 𝒞1 .
Especially 𝒞𝑤 = {𝑣 + 𝑤|𝑣 ∈ 𝒞2}  is a set which separates 𝒞2 into 
different cosets.

→Each 𝒞𝑤 can choose unique  set of 𝑘1 − 𝑘2 vectors in  𝒞1

(Coset representative)

Suppose 𝑣 is a coset representative. The [[𝑛, 𝑘1 − 𝑘2]]codeword is given as 

[16] A. Robert Calderbank, and Peter W. Shor. "Good quantum error-correcting codes 

exist." Physical Review A 54.2 (1996): 1098.

[17] Andrew  Steane,  "Multiple-particle interference and quantum error 

correction." Proceedings of the Royal Society of London. Series A: Mathematical, 

Physical and Engineering Sciences 452.1954 (1996): 2551-2577.

[physical, logical, min distance] dimension 
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Introduction to QRS : Galois Field 

Galois Field is a field with finite number of elements. Addition 
/Multiplication  for the element of 𝐺𝐹(𝑝) is defined as modulo 𝑝 
addition/multiplication where 𝑝 is a prime number

e.g. 𝐺𝐹 5 = 0, 𝛼, 𝛼2, 𝛼3, 1 
Suppose 𝛼 = 2, then 𝐺𝐹(5) = {0,2,4,3,1}

+ 0 2 4 3 1

0 0 2 4 3 1

2 2 4 1 0 3

4 4 1 3 2 0

3 3 0 2 1 4

1 1 3 0 4 2

× 0 2 4 3 1

0 0 0 0 0 0

2 0 4 3 1 2

4 0 3 1 2 4

3 0 1 2 4 3

1 0 2 4 3 1
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Expansion of Galois Field 

It is possible to define Galois extension 𝐺𝐹(𝑝𝑘) by using minimal 
polynomial (monic 𝑘-dim polynomial of 𝐺𝐹 𝑝 ).

The root of the minimal polynomial is called primitive element 
and denote it by 𝛼.
e.g.      𝐺𝐹 2 = {0,1}
            𝐺𝐹 22 = {0,1, 𝛼, 𝛼2}

𝑓 𝑥 = 𝑥2 + 𝑥 + 1

+ 0 1 𝛼 𝛼2

0 0 1 𝛼 𝛼2

1 1 0 𝛼2 𝛼

𝛼 𝛼 𝛼2 0 1

𝛼2 𝛼2 𝛼 1 0

× 0 1 𝛼 𝛼2

0 0 0 0 0

1 0 1 𝛼 𝛼2

𝛼 0 𝛼 𝛼2 1

𝛼2 0 𝛼2 1 𝛼

minimal polynomial
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Appendix: SUM Gate for 𝑑 = 5

ۧ|𝑎𝑏𝑐 ۧ|𝑑𝑒𝑓 ۧ|000 ۧ|000
124 124

carry check if 
567248

ۧ|𝑎𝑏𝑐 ۧ|(𝑎 + 𝑑 + 𝑐4)(𝑏 + 𝑒 + 𝑐2)(𝑐 + 𝑓) ۧ|000

if a=d==1:
carry 8

if b=e==1:
carry 4

if c=f==1:
carry 2

4 2 1

(overflow)

Full adder part
(written in mod 8)

5 ≡ 0 𝑚𝑜𝑑 5
6 ≡ 1 𝑚𝑜𝑑 5
7 ≡ 2 𝑚𝑜𝑑 5
8 ≡ 3 𝑚𝑜𝑑 5

0 ≡ 0 𝑚𝑜𝑑 5
1 ≡ 1 𝑚𝑜𝑑 5
2 ≡ 2 𝑚𝑜𝑑 5
3 ≡ 3 𝑚𝑜𝑑 5
4 ≡ 4 𝑚𝑜𝑑 5

do nothing for  check if (activate anscillae)

RCA part

Modulo part



mod 5

mod 7

Appendix: Implementation of SUM gate

need to check the overflow
→ require 𝐶𝑘+1𝑋 gate

• 2(𝑑 − 1) ≤ 2𝑘

• 2(𝑑 − 1) > 2𝑘

RCA Modulo
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Appendix: 𝐺𝐹 2𝑚  QRS Code

• Required gates for 𝐺𝐹(2𝑚) QRS code can be implemented using only CX gates
• A more efficient way to implement this using Toffoli has not been found.

e.g. 𝐺𝐹 4

exponential polynomial vector

𝑥2 + 𝑥 + 1 = 0

primitive polynomial

Required gates

• 𝐶1 gate
ۧ𝑎 ۧ𝑏 → | ۧ𝑎 | ۧ𝑎 + 𝑏

• 𝐶𝛼 gate
ۧ𝑎 ۧ𝑏 → | ۧ𝑎 | ۧ𝑎𝛼 + 𝑏

• 𝐶𝛼2 gate
ۧ𝑎 ۧ𝑏 → | ۧ𝑎 | ۧ𝑎𝛼2 + 𝑏

𝑚 CX
general 

decomposition
𝑚 − 1 + 𝐻𝑤(𝛼𝑚) CX

𝐶1 gate 𝐶𝛼 gate 𝐶𝛼2 gate

qudit 1

qudit 2

𝐺𝐹 4 = 0, 1, 𝛼, 𝛼2 = 0, 1, 𝛼 , 𝛼 + 1 = {00, 01, 10, 11}
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e.g. 𝐺𝐹 2𝑚  QRS Code: [[3,1,3]]5 code

generator matrix and parity check matrix

𝑔 𝑥 = 𝑥 − 1 𝑥 − 𝛼 = 𝑥2 + 1 + 𝛼 𝑥 + (𝛼)
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Appendix: Stabilizer Codes

• Efficient encoding circuit for general stabilizer codes require many 
controlled gates with multi-targets[19].

• Cannot apply our method directly

[19] Cleve, Richard, and Daniel Gottesman. "Efficient computations of encodings for 
quantum error correction." Physical Review A 56.1 (1997): 76.

codeword



97

Other Applications 

Discrete time quantum walk algorithm[15]

DTQW on a graph[16]

time evolution

[15] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Physical 
Review A, 48(2):1687, 1993. 
[16] B. Douglas and J. Wang. Efficient quantum circuit implementation of quantum 
walks. Physical Review A, 79(5):052335, 2009. 

ShiftRShiftL

00 01

10 11

e.g. quantum walk on fully connected graph

𝑡1
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Other Applications 

Grover’s search[17]

repeat 𝑂( 𝑛) times

Oracle

Diffusion
↑

[17] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty- eighth 
annual ACM symposium on Theory of com- puting, pages 212–219, 1996. 
[18] C. Lavor, L. Manssur, and R. Portugal. Grover’s al- gorithm: Quantum database search. arXiv preprint quant-
ph/0301079, 2003. 

Circuit Implementation [18]
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Processor 1 (p1):
q0, q1 = init();
q2 = genEnt p2;
RCXC q0 via q2;
q2 = genEnt p2;
QSEND q1 via q2;

Processor 2 (p2):
q0’, q1’ = init();
q2’ = genEnt p1;
RCXT q0’ via q2’;
q2’ = genEnt p1;
q1’ = QRECV via 
q2’;
CX q0’ q1’;

Creating entanglement between 𝑸𝟐 and 𝑸𝟐
′

Applying CX gates remotely in InQuIR
arXiv:2302.00267
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Processor 1 (p1):
q0, q1 = init();
q2 = genEnt p2;
RCXC q0 via q2;
q2 = genEnt p2;
QSEND q1 via q2;

Processor 2 (p2):
q0’, q1’ = init();
q2’ = genEnt p1;
RCXT q0’ via q2’;
q2’ = genEnt p1;
q1’ = QRECV via 
q2’;
CX q0’ q1’;

Apply a remote CX gate to (𝑸𝟎, 𝑸𝟎
′ )

by consuming the entangle pair (𝑸𝟐, 𝑸𝟐
′ ),

where 𝑸𝟎 is a control qubit

This procedure does not change the 
position of data qubits

Applying CX gates remotely in InQuIR
arXiv:2302.00267
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Processor 1 (p1):
q0, q1 = init();
q2 = genEnt p2;
RCXC q0 via q2;
q2 = genEnt p2;
QSEND q1 via q2;

Processor 2:
q0’, q1’ = init();
q2’ = genEnt p1;
RCXT q0’ via q2’;
q2’ = genEnt p1;
q1’ = QRECV via 
q2’;
CX q0’ q1’;

Teleport 𝑸𝟏 to 𝑸𝟐
′ , and then move the data to 𝑸𝟏

′  from 𝑸𝟐
′  

Applying CX gates remotely in InQuIR
arXiv:2302.00267
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