2024/08/31 AQIS2024 Satellite WS for FTQC

A computer system perspective of large-scale quantum computers

SOKENDAI / OIST / JSPS Shin Nishio

Phys. Rev. A **107**, 032620 IEEE TQE **4 (2023): 1-7** arXiv:**2406.08832** arXiv:**2302.00267**

Shin Nishio

2022.4 \sim

• QIST unit, supervised by Kae Nemoto

TQC2024(Sept9-13) is in

Outline

- 1. Background and overview of large-scale quantum computation
- 2. System software Circuit optimization of logical circuit
- 3. Modular architecture
 - 1. Quantum multiplexing for interconnects
 - 2. Intermediate representation (Programming Language)
- 4. Towards large-scale quantum computer

1. Background: Motivation

$P \subseteq BPP \subseteq BQP \subseteq PSPACE$

- Prime factor (superpolynomial speedup) Classical : $\exp(((64/9)^{1/3} + o(1))(\log n)^{1/3}(\log \log n)^{2/3})$ Shor[1]: $O(n^3)$
- Database searching (polynomial speedup) Classical: O(n) Grover[2]: O(√n)

Discrete logarithms, quantum simulation, system of linear equation...

[1] Peter Shor "Algorithms for quantum computation: discrete logarithms and factoring." *Proceedings 35th annual symposium on foundations of computer science*. leee, 1994.
[2] Lov K. Grover "Quantum mechanics helps in searching for a needle in a haystack." *Physical Review Letters*, 79(2):325-328, 1997.

Quantum Computing today

 Speed of atomic operations 	
High performance computing [3]	
Fugaku(2020)	
442 PFLOPS	
clock rate for a processor	2.2 GHz
Quantum Computing (supercond	ucting + optical interconnect)[4]
Single qubit gate	30 ns (33 MHz)
Two qubit gate	60 ns (16 MHz)
Measurement 2	40 ns (4 MHz)
Entanglement generation	for remote nodes 1000 ns (1 MHz)
$\rightarrow 10^3$ speedup is required!	

[3] 安里彰「コデザインによるスーパーコンピュータ富岳プロセッサの開発」電子情報通信学会 基礎・境界ソサイエティ Fundamentals Review (2022)
[4] Shin Nishio and Ryo Wakizaka. "InQuIR: Intermediate Representation for Interconnected Quantum Computers." arXiv preprint arXiv:2302.00267 (2023).

Fault-tolerant quantum computing

Qubit lifetime may saturate, but # of qubits is scaling → Fault-tolerant quantum computing may work

[5] Irfan Siddiqi, "Engineering high-coherence superconducting qubits." *Nature Reviews Materials* 6.10 (2021): 875-891.
 [6] Maurizio Di Paolo Emilio, "Current Status and Next in Quantum Computing." EETimes (2022)

6

Fault-tolerant quantum computing

Qubit lifetime may saturate, but # of qubits is scaling → Fault-tolerant quantum computing may work

• Error suppression factor $\Lambda \ = \ 2.14 \ \pm \ 0.02$ when increasing the code distance by two

- Real-time decoding Latency of 63 μs at distance-5 up to a million cycles, with a cycle time of 1.1 μs
- Longer lifetime for logical qubit 2.4 ± 0.3 times better than the lifetime of physical qubits

[7] Google Quantum AI and Collaborators, Quantum error correction below the surface code threshold. arXiv:2408.13687

FTQC Overheads

Fault-tolerant Quantum Computing Space overhead (100k qubits)

- All the computation processes are on a r times redundant code space where r = k/n
- Cost of universality Magic state distillation (Tri-orthogonal codes, 3D color codes etc), code-switching, Concatenation, etc

Time overhead (days)

- Repetitive Syndrome measurement \rightarrow Decoding \rightarrow Correction
- Fault-tolerant Logic

Computational resources

logical

High-level quantum program Quantum Algorithm > MCT, For, While, If, λ , Classical Computation Solovay-Kitaev Compilation (Discrete-gate) Quantum Circuit Universal gate set {H, T, CX} Lattice Surgery, Defect Braiding, (Logical) Quantum Circuit 💭 Code-switching, Magic state Encoding Decoding distillation ... Physical Quantum Circuit 💭 Quantum Assembly-like Language 💭 Physical Control Program analysis and Physical optimization Language and decoding algorithms are core of

quantum computing systems !

Computational resources

logical

Language and decoding algorithms are core of quantum computing systems !

IEEE TQE 4 (2023): 1-7

There are many good codes and its fault-tolerant logic, but some of them are not well-defined in low-layer

Formalize the circuit optimization rules which preserve unitary \checkmark Check the computational complexity \checkmark Find an easy case, efficient solver, approximation, etc. \checkmark

Introduce intermediate representation and then optimize

For reducing computational resources

What I can do as a computer scientist

0. Is the layer structure appropriate?

- 1. Find a bottleneck
- 2. Ease it
- \rightarrow go back to 0

Logical Circuit

• Circuit optimization of logical circuit

Lattice surgery and defect braiding are candidates for the faulttolerant logic for surface code computing

For the optimization problem of the logical quantum circuit,

- It is NP-hard for lattice surgery in general [8]
- The problem in a formal way has not been defined for defect braiding
- \rightarrow so we did!

[8] Daniel Herr, Franco Nori, and Simon J. Devitt. "Optimization of lattice surgery is NP-hard." *Npj quantum information* 3.1 (2017): 35.
[9] K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, *Hardness of braided quantum circuit optimization in the surface code*, IEEE Transactions on Quantum Engineering 4, 1-7

IEEE TQE **4 (2023): 1-7** Computational complexity of DB circuit optimization

Defect braiding on surface codes realize two qubit logical interaction

K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, *Hardness of braided quantum circuit optimization in the surface code*, IEEE Transactions on Quantum Engineering 4, 1-7

IEEE TQE **4 (2023): 1-7** Computational complexity of DB circuit optimisation

 $\pi: \{A, B, C, D, E\} \rightarrow \{A, B, E, C, D\}$

Enough margin between gates

Gates \mathcal{R} : 1 = {B, C, D} 2 = {C, D} 3 = {A, B} Partial order: 2 > 1, 3 > 1

K Wasa, <u>S Nishio</u>, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, *Hardness of braided quantum circuit optimization in the surface code*, IEEE Transactions on Quantum Engineering 4, 1-7

IEEE TQE **4 (2023): 1-7** Computational complexity of DB circuit optimisation

We have proven that:

NP-completeness of Min-Braiding optimization

How?

- Assume that there exists an algorithm $\mathcal A$ that solves Min-Braiding efficiently.
- If it can be solved using \mathcal{A} for any instance of the **known hard problem** \mathcal{P} , Min-Braiding is at least more difficult than \mathcal{P} .
 - We used **PlanarRectLinear 3SAT** (subset of 3SAT)

K Wasa, S Nishio, K Suetsugu, M Hanks, A Stephens, Y Yokoi, K Nemoto, *Hardness of braided quantum circuit optimization in the surface code*, IEEE Transactions on Quantum Engineering 4, 1-7

Optimizing DB circuit with ZX calculus

Fig. from [10]

[10] Michael Hanks, Marta Estarellas, William Munro & Kae Nemoto(2020). Effective compression of quantum braided circuits aided by ZX-calculus. *Physical Review X*, *10*(4), 041030.

2. Modular architecture

Quantum channel (interconnect [11])

photonic system is regarded as among the best candidate

[11] David Awschalom, et al. "Development of quantum interconnects (quics) for next-generation information technologies." *PRX Quantum* 2.1 (2021): 017002.
[12] Ying Li and Simon C. Benjamin. "Hierarchical surface code for network quantum computing with modules of arbitrary size." *Physical Review A* 94.4 (2016): 042303.
[13] Johannes Borregaard et al. "Efficient quantum computation in a network with probabilistic gates and logical encoding." *Physical Review A* 95.4 (2017): 042312.

Quantum Error Correction Code

Optical Systems

Treating the degrees of freedom of photons as qubits/qudits

- Photon is sometimes lost, which is an obstacle to information processing(called loss error).
- Quantum Multiplexing[14]: By using multiple degree of freedom, one photon can be used as high-dimensional qudit.
 e.g. polarization and timebin
 - $|VL\rangle$, $|VS\rangle$, $|HL\rangle$, $|VS\rangle$: 4-dim qudit

[14]Nicolò Lo Piparo, William J. Munro, and Kae Nemoto. "Quantum multiplexing." *Physical Review A* 99.2 (2019): 022337.

Timebin Encoding

• Timebin encoding

Quantum Multiplexing

Quantum Multiplexing is a technique for exploit multiple degrees of freedom of photon.

- It is known that QM can reduce the resource of QRS code
 - single photon sources[22]
 - # of CX gates for Toffoli gates[23]

[22] Nicolò Lo Piparo, et al. "Resource reduction for distributed quantum information processing using quantum multiplexed photons." *Physical Review Letters* 124.21 (2020): 210503.

[23] Nicolò Lo Piparo, et al. "Aggregating quantum networks." *Physical Review A* 102.5 (2020): 052613.

Quantum Multiplexing

Hao-Cheng Weng, Chih-Sung Chuu,

Implementation of Shor's Algorithm with a Single Photon in 32 Dimensions arXiv:2408.08138

(Classical)Reed-Solomon code

- Errors are counted with respect to symbols (corresponds to the elements of Galois Field)
- Maximum distance separable code (satisfy singleton bound) $d_{min} = n k + 1$
- Be able to correct t = n k loss errors
 - good for optical channel

Applications CD,DVD, QR, Satellite communication

Quantum Reed-Solomon code

- Good at correct loss errors for qudits
 - Application: quantum repeaters[15]

[15] Sreraman Muralidharan et al. "One-way quantum repeaters with quantum Reed-Solomon codes." *Physical Review A* 97.5 (2018): 052316.

Summary of Introduction

- QEC is a fundamental tool for Quantum Information Processing
- The implementation of quantum communication with optics is progressing.
 - there are still problems such as loss error.

- Quantum Reed-Solomon code is efficient for the loss errors
 - Errors are counted with respected to symbols(element of GF)

The cost of QEC including the encoding circuit makes their implementation quite challenging.

(Classical) Reed-Solomon Code

Reed-Solomon code over $GF(p^k)$ defined as follows: where p is prime number and k is positive integer

1. Let α be the primitive element of $GF(p^k)$

$$GF(p^k) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^k - 2}\}$$

(Also define addition/multiplication over GF by using minimal polynomial)

- 2. Input information is treated as the coefficients of polynomial $a(x) = a_0 + a_1 x + \cdots + a_{k-1} x^{k-1}$
- 3. Generator polynomial is given as $g(x) = (x - \alpha^{l})(x - \alpha^{l+1}) \cdots (x - \alpha^{l+d-2})$ where integer $l \ge 0$
- 4. Calculate codewords w(x)

$$w(x) = a(x)g(x)$$

Quantum Reed-Solomon code [18]

It is possible to construct Quantum Codes from Reed-Solomon code by using CSS construction.

e.g. construction from [19] $C_{1} = [d, k, d - k + 1]_{d}$ $C_{2} = C_{1}^{\perp} = [d, d - k, k + 1]_{d}$ $Q_{C_{1},C_{2}} = \begin{bmatrix} [d, 2k - d, d - k + 1] \end{bmatrix}_{d}$ $\underset{\text{physical logical optical opt$

[18] Markus Grassl, Willi Geiselmann, and Thomas Beth. "Quantum reed-solomon codes." *International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes*. Springer, Berlin, Heidelberg, 1999.

[19] Muralidharan Sreraman, et al. "One-way quantum repeaters with quantum Reed-Solomon codes." *Physical Review A* 97.5 (2018): 052316.

Phys. Rev. A **107**, 032620 Proposal: Encoding circuit (e.g. [[5,1,3]]₅ code)

new efficient implementation of the encoding circuit

$$\mathcal{C}_{1} = \begin{bmatrix} 5, 3, 3 \end{bmatrix}_{5} \qquad \mathcal{C}_{2} = \begin{bmatrix} 5, 2, 4 \end{bmatrix}_{5}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & \alpha & \alpha^{2} & \alpha^{3} & 1 \\ 0 & \alpha^{2} & 1 & \alpha^{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 4 & 3 & 1 \\ 0 & 4 & 1 & 4 & 1 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & \alpha & \alpha^{2} & \alpha^{3} & 1 \\ 0 & \alpha & \alpha^{2} & \alpha^{3} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 4 & 3 & 1 \\ 0 & 4 & 1 & 4 & 1 \end{pmatrix}$$

$$\begin{split} X_L^1 &= X_0^0 X_1^2 X_2^4 X_3^3 X_4^1 \\ &|0\rangle_L = |00000\rangle + |11111\rangle + |22222\rangle + |33333\rangle + |44444\rangle \end{split}$$

5-dim qudit representation

Operations for *d*-dimensional Qudit

Generalized CX gate[20]

$$SUM(|a\rangle |b\rangle) = |a\rangle |a + b \mod d\rangle$$

Generalized Hadamard gate[21]

$$DFT(|0\rangle) = |0\rangle + |1\rangle + \dots + |d-1\rangle$$

[20] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Physical Review A,64(1):012310, 2001.

[21] Markus Grassl, Martin Rötteler, and Thomas Beth. "Efficient quantum circuits for nonqubit quantum error-correcting codes." *International Journal of Foundations of Computer Science* 14.05 (2003): 757-775.

Phys. Rev. A 107, 032620

Result: Required resources

Required number of SUM gate for $\left[\left[d, 1, \left[\frac{d+1}{2}\right]\right]\right]_d$ Quantum Reed-Solomon Code over GF(d)

Phys. Rev. A **107**, 032620 **Proposal: implementation of SUM Gate**

qubit

Represent p-dim qudit over k-qubits system ($2^k \ge p$) where p is prime number qudit

Modulo part

$$N_{M} = \begin{cases} \sum_{i=d}^{2(d-1)} \left(C_{k}X + H_{D}(\operatorname{bin}(i), \operatorname{bin}(i \mod d)) CX \right) & \text{if } 2(d-1) \leq 2^{k} \\ \sum_{d}^{2^{k}-1} C_{k}X + \sum_{2^{k}}^{2(d-1)} C_{k+1}X + \sum_{i=d}^{2(d-1)} H_{D}(\operatorname{bin}(i), \operatorname{bin}(i \mod d)) CX & \text{if } 2(d-1) > 2^{k} \end{cases}$$

$$32$$

Multiplexing reduction for the Toffoli gates [23]

CCX gateCX gate + OSs(Toffoli gate)

[23] Nicolò Lo Piparo, et al. "Aggregating quantum networks." *Physical Review A* 102.5 (2020): 052613.

Phys. Rev. A **107**, 032620 **Proposal:** Multiplexing decomposition for the $C_k X$ gate

Reduce # of control qubits by using OS

Phys. Rev. A **107**, 032620 Comparison: General Decomposition[24] with QM Decomposition

$C_k X \rightarrow 4(k-2)CCX$ $CCX \rightarrow 6CX + 2H + 3T^{\dagger} + 5T$

[24] A. Barenco, C. H. Bennett, R. Cleve, D. P. Di- Vincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52(5):3457, 1995.

Phys. Rev. A **107**, 032620 Result: Multiplexing Optimization for SUM gates

Phys. Rev. A **107**, 032620 Result: Multiplexing Optimization for the Encoder

Phys. Rev. A **107**, 032620

Result: The cost of SUM gate

Phys. Rev. A **107**, 032620 Result: Multiplexing Optimization Ratio

Gray line : dim = 2^k

Conclusion for QM for QRS

- We apply QM to the implementation of the encoding circuit of the QRS codes
- In this case we show that $C_k X$ gates can be reduced into a single CX gate by using linear optical elements.
- Therefore, the total number of CX gates require to implement d-dimensional QRS codes is drastically reduced (except when $d = 2^m$).
- We believe that this can also be applied to other systems such as Grover's search and discrete time quantum walks, leading to a much more feasible implementation of such technology

Future work

- Evaluation of other resources (OSs)
- Correction/Decoder circuit
- Comparison with other circuit optimization methods

Applications

- Other CSS codes and more general codes
- Any system that requires SUM gates

QM and surface codes

Hybrid codes system may introduce overhead... 42

Erasure(photon loss) is dominant in the optical systems

$$\rho \to (1-\varepsilon)\rho + \varepsilon |e\rangle \langle e|$$

Erasure error

where $|e\rangle \notin \mathcal{H}_2$

 \rightarrow We can detect erasure without destruction!

0. detect erasure errors

1. replace the erased qubit with a mixed-state

$$\frac{\mathbb{I}}{2} = \frac{1}{4}(\rho + X\rho X + Y\rho Y + Z\rho Z)$$

- 2. stabilizer measurement
- 3. Decoding (calculate syndrome and correct)

arXiv:**2406.08832 Proposal** Quantum multiplexed SC comm

Erasure channel

• Erasure(photon loss) is dominant in the optical systems

 $\rho \rightarrow (1 - \varepsilon)\rho + \varepsilon |e\rangle \langle e|$ Erasure error

where $|e\rangle \notin \mathcal{H}_2$

 \rightarrow We can detect erasure without destruction!

Correction procedure for erasure errors

$$\rho \to (1-\varepsilon)\rho + \varepsilon |e\rangle \langle e|$$

0. detect erasure errors

1. replace the erased qubit with a mixed-state

$$\frac{\mathbb{I}}{2} = \frac{1}{4}(\rho + X\rho X + Y\rho Y + Z\rho Z)$$

2. stabilizer measurement

3. Decoding (calculate syndrome and correct)

Erasure Correction with Surface Codes

[25] N. Delfosse and G. Zémor, Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel, Physical Review Research 2, 033042 (2020)

arXiv:**2406.08832**Proposal: Three scenarios for QM Comm

Suppose we apply quantum multiplexing with m qubits per one photon, we can send

- 1. m different code words with the same # of photons
- 2. $\sqrt{m} \times \sqrt{m}$ bigger code words with the same # of photons
- 3. Original code words with $\frac{1}{m}$ photons

	4 6 • 3 • 7		$\sqrt{m}d \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 6 • 5 • 7
Scenarios Code parameters	0 2 0 3 without multiplexing $[[2d^2, 1, d]]$	(A)	$[2md^2, 1, \sqrt{md}]]$	(C)
Number of Codes	1	m	1	1
Number of Data Qubits	$2d^2$	$2md^2$	$2md^2$	$2d^2$
Number of Photons	$2d^2$	$2d^2$	$2d^2$	$\lfloor 2d^2/m floor$
Logical Error Rate	-	Same as without quantum multiplexing	Affected by classical correlation	Affected by classical correlation

Scenario (A) Multiple Code Words

Sending m code words

- *m* times better throughput
- No classical correlation inside a code

Scenario (B) Large Code Word

Sending bigger codes

- Large code distance
- Encoding *m* qubits in a photon
- \rightarrow correlated Pauli errors

Scenarios		$\sqrt{m}d = \begin{pmatrix} 2 & 2 & 2 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
	without multiplexing	
Code parameters	$\left[\left[2d^2, 1, d \right] \right]$	$[[2md^2, 1, \sqrt{m}d]]$
Number of Codes	1	1
Number of Data Qubits	$2d^2$	$2md^2$
Number of Photons	$2d^2$	$2d^2$
Logical Error Rate	-	Affected by classical correlation

Scenario (B) Large Code Word

Sending bigger codes

- Large code distance
- Encoding *m* qubits in a photon
- \rightarrow correlated Pauli errors

Benefit from the large distance is dominant

Scenario (C)

Sending same codes with fewer photons

- *m* times better throughput
- Encoding *m* qubits in a photon
- \rightarrow Classical correlation inside codewords

Scenarios		4 6 5 7 0 2 1 3 (C)
	without multiplexing	, , , , , , , , , , , , , , , , , , ,
Code parameters	$\left[\left[2d^2,1,d\right]\right]$	$\left[\left[2d^2,1,d\right]\right]$
Number of Codes	1	1
Number of Data Qubits	$2d^2$	$2d^2$
Number of Photons	$2d^2$	$\lfloor 2d^2/m floor$
Logical Error Rate	-	Affected by classical correlation

arXiv:**2406.08832** Scenario (C): Degradation caused by QM

- There is a degree of freedom in the assignment of qubits to photons
- \rightarrow We propose 5 assignment strategies

The impact of introducing correlation on the performance is not trivial.

- Can negative effects of correlation be avoided?
- Is it possible to achieve better performance than nomultiplexing with reducing number of photons?

Assignment strategies for QM

Maximizing distance may help!

arXiv:2406.08832

Assignment strategies for QM (2)

(iii) Uniformly random

Inspired by interleaving for classical error correction codes

(iv) Random + Thresholds

For photons: Threshold $T = \frac{d}{2} - 1$ Pick 1st qubit randomly While # of qubits in the photon < m: Pick a candidate qubit *c* randomly. if c has distance > T from nearest member: add *c* to the photon if there is no candidate: update T as T - 1

arXiv:2406.08832 Comparison on assignment strategies

m = 2

• Randomness and maximizing the distance has positive effect

Assignment strategies for QM

(v) Stabilizer based

arXiv:2406.08832

Z-stabilizer

X-stabilizer

Mixed

Assignment strategies for QM

m = 4

• May be useful when using biased code or error is biased

Scaling the code

If $m \ll d$, classical correlation can be ignored

arXiv: 2406.08832 Hypergraph Product (HGP) Codes

- Asymptotically finite rate
- Can be regarded as Generalized surface code Product of two ring graphs

61

Non-ML Decoder

Maximally-likelihood Decoder for HGP (Gaussian elimination) ${\cal O}(n^3)$

Combined decoder (peeling + pruned peeling + VH)[26] $O(n^2)$ or $O(n^{1.5})$ for probabilistic version

Fig from [26]

[26]N. Connolly, V. Londe, A. Leverrier, and N. Delfosse, "Fast erasure decoder for hypergraph product codes," Quantum, vol. 8, p. 1450, Aug. 2024, doi: 10.22331/q-2024-08-27-1450.

Decoding stopping set

Combined decoder[26] runs in $O(n^2)$ Two types of stopping set

- Stabilizer stopping set All qubits in support of the x/z stabilizer
- Classical stopping set entire low or column: classical codes

Error Recovery Failure (ERF)

- Decoding Failure (DF)
- Logical Error (LE)

ERF

[26] Nicholas Connolly, et al. "Fast erasure decoder for a class of quantum LDPC codes." *arXiv preprint arXiv:2208.01002* (2022).

Hypergraph Product (HGP) Codes

- Calculate distance is not as easy as surface codes
- Decoder-aware assignment strategies
- Without proper placement, the effect of degradation increases a lot with *m*

arXiv:2406.08832

Hypergraph Product (HGP) Codes

[[512, 8]] HGP codes ($16 \times 16, 16 \times 16$)

m = 4

m = 16

(v) can achieve the same performance as without multiplexing while significantly reducing the resources required

Hypergraph Product (HGP) Codes

(v) is even better than no-multiplexing!

arXiv:2406.08832

Summary

⊿

QM reduce required number of resouces

- Number of gates \rightarrow fast encoding
- Number of photon \rightarrow Increase the throughput

QM may introduce a correlation on errors in qubits

• It may increase the logical error rate

↑could be dealt with assignment strategies

- Code structure aware (Surface codes)
- Decoder aware (HGP codes)

- Other assignment strategy
- Threshold behavior
- Efficiency of conversion of qubits to photons

3-2 Programming Language and IR

Quantum Architecture

Program analysis and optimization

Merits of formally defined Language

Allow us to discuss the behavior of programs
 → Program verification (guarantee that a program has some property during execution)

2. Modeling of computation in an appropriate way
 → More sophisticated program analysis, optimization, and intuitive structure of codes

3-2 Formal language for modular arch

Setting

- Multiple quantum processors linked via quantum channels to realize scalable quantum computers
- Remote operations are achieved by using quantum channels

Compilation for circuit distribution

- Many quantum algorithms are designed for monolithic architectures
 - It is difficult to implement quantum circuits with existing frameworks (e.g. QMPI [27])

[27] T. Häner, D. S. Steiger, T. Hoefler, and M. Troyer, "Distributed quantum computing with QMPI"

Compilation for circuit distribution

 Distributed quantum compilers [28, 29] map quantum circuits to interconnected architectures

[28] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, "Compiler design for distributed quantum computing"

[29] O. Daei, K. Navi, and M. Zomorodi-Moghadam, "Optimized Quantum Circuit Partitioning"
How to define a typed IR

InQuIR: programming language

Flow

1. Define the syntax

```
e ::= x = init() 
| U(x_1, ..., x_n) 
| x = meas(x_1, ..., x_n) 
| x = genEnt p 
| entSwap x_1 x_2 
| QSEND x_1 via x_2 
| x_1 = QRECV via x_2 
| RCXC x_1 via x_2 
| RCXT x_1 via x_2 
U ::= X | Y | Z | CX | ...
```

2. Define (operational) semantics How the runtime state transitions

 $\begin{array}{l} \mathsf{e.g.} \\ \hline \forall v_i \in DataQubit \cup CommQubit \\ \hline \hline [\rho, Q, E, \llbracket U(v_1, \ldots, v_n); P \rrbracket_p, H] \rightarrow \begin{bmatrix} U_{v_1, \ldots, v_n} \rho U_{v_1, \ldots, v_n}^{\dagger}, Q, E, \llbracket P \rrbracket_p, H \end{bmatrix} \end{array}$

3. Fast static analysis with type system!

 $\frac{N+1 \mid \Gamma \vdash e}{N \mid \Gamma, x: \texttt{qbit} \vdash \texttt{QSEND} \; x \; \texttt{via} \; n; e} \quad \frac{N > 0 \qquad N-1 \mid \Gamma, x: \texttt{qbit} \vdash e}{N \mid \Gamma \vdash x = \texttt{QRECV} \; \texttt{via} \; n; e}$

Typing rules for qubit usage analysis

Introducing a quantum programming language to distributed quantum compilers has several advantages:

• The semantics of quantum programs are formally defined,

so resource consumption can be estimated precisely

- Undesirable behaviors can be detected by using methods of static program analysis (e.g. type systems, abstract interpretation)
- Different quantum compilers can use the same program format

Contribution: InQuIR

• We propose InQuIR, an Intermediate Representation for Interconnected Quantum Computers (First formal language for distributed QC)

The (Brief) Syntax of InQuIR

$$e ::= x = init()$$

$$| U(x_1, ..., x_n)$$

$$| x = meas(x_1, ..., x_n)$$

$$| x = genEnt p$$

$$| entSwap x_1 x_2$$

$$| qSEND x_1 via x_2$$

$$| x_1 = QRECV via x_2$$

$$| RCXC x_1 via x_2$$

$$| RCXT x_1 via x_2$$

$$| CXT x_1 via x_2$$

$$| X = X | Y | Z | CX | ...$$
Each processor p has a sequence of instructions $\overrightarrow{e_p}$ to execute
Generate an entanglement with a processor p, and give it a label x
Sending/Receiving a qubit data by quantum teleportation consuming an entanglement x_2

$$| RCXC x_1 via x_2 |$$

$$| RCXT x_1 via x_2 |$$

$$| CX | ...$$

Applying CX gates remotely in InQuIR

Concurrent Processes

Processor 1 (p1): q0, q1 = init(); q2 = genEnt p2; RCXC q0 via q2; q2 = genEnt p2; QSEND q1 via q2;

Processor 2 (p2):
q0', q1' = init();
q2' = genEnt p1;
RCXT q0' via q2';
q2' = genEnt p1;
q1' = QRECV via
q2';
CX q0' q1';

Two (toy) Compilation Strategies

• #(communication depth) [30]

circuit name	RCX strategy	MOVE strategy
adder_63	304	334
life_238	5026	7220

[30] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, "Compiler design for distributed quantum computing"

arXiv:2302.00267 Network utilization analysis and visualization

Evaluation of compilation strategies by the same indicators (e.g. # of instructions, depth)

Estimating the hardware topology required for apps →provide guidelines for hardware design

Future works?

- Introduction of new metrics for evaluation
- QEC and FT logics
- Find the "bugs" you want to verify with type system
- (Implementations...)

Circuit name	N	E-count	C-count	Li	near: (2, 2	$2) \times 8$	Li	near: (2,4	$(1) \times 8$	Li	near: (2,6	$6) \times 8$
				D_E	D_C	cost[ns]	D_E	D_C	cost	D_E	D_C	cost [ns]
adr4_197	16	5308	10616	1020	3150	1562850	510	2248	751630	510	2248	751630
ising_model_16	16	140	280	10	20	13510	5	20	7280	5	20	7280
rd53_138	16	122	244	33	74	47730	17	66	23610	17	66	23610
sqn_258	16	15054	30108	2843	9606	4393910	1365	6024	2136340	1365	6024	2136340
root_255	16	31286	62572	5112	19268	8086560	2596	12878	3942970	2596	12878	3942970
4gt12-v1_89	16	224	448	68	136	97370	34	118	48780	34	118	48780
9symml_195	16	66732	133464	10512	40366	16504980	5342	25616	8025860	5342	25616	8025860
life_238	16	42796	85592	6755	26076	10628990	3432	16564	5153840	3432	16564	5153840

Verification of InQuIR

- We can statically check the "safety" of InQuIR programs by static program analysis
 - e.g. the qubit exhaustion and deadlocks do not occur
- A type system can be formalized to analyze qubit utilization

$$\frac{N+1 \mid \Gamma \vdash e}{N \mid \Gamma, x: \texttt{qbit} \vdash \texttt{QSEND} \; x \; \texttt{via} \; n; e} \qquad \frac{N > 0 \qquad N-1 \mid \Gamma, x: \texttt{qbit} \vdash e}{N \mid \Gamma \vdash x = \texttt{QRECV} \; \texttt{via} \; n; e}$$

Typing rules for qubit usage analysis

Verification of InQuIR

• Case study: deadlock free

Node A

Waiting relation is cyclic → stack!

Path blocking for entanglement swapping

Ongoing & Future Work

- Extending primitive operations of InQuIR to enable sophisticated optimizations
 - RCXC/RCXT should be decomposed to enable quasiparallelism [31]
- Dealing with nondeterministic protocol
 - Entanglement purification / feed-forward
- Seeking new metrics to monitor resource usage

[31] D. Cuomo, M. Caleffi, K. Krsulich, F. Tramonto, G. Agliardi, E. Prati, and A. S. Cacciapuoti, "Optimized compiler for distributed quantum computing"

4. Towards large-scale quantum computer

For the implementation of useful & scalable FTQC

• Topological codes \rightarrow High-rate LDPC codes

符号	k	d	degree
2D surface codes	0(1)	$n^{\frac{1}{2}}$	4
2D hyperbolic surface codes	$\Omega(n)$	$\log(n)$	0(1)
3D surface codes	0(1)	$(n \log n)^{\frac{1}{2}}$	0(1)
Hypergraph product codes	$\Omega(n)$	$n^{\frac{1}{2}}$	0(1)

Bivariate bicycle

Bravyi, Sergey, et al. "High-threshold and low-overhead fault-tolerant quantum memory." *Nature* 627.8005 (2024): 778-782.

4. Towards large-scale quantum computer

overhead for magic state distillation scales as $O(\log^{\gamma}(1/\epsilon))$

Open Question

Is there any quantum error correction codes with $\gamma \to 0$ where $\gamma = \log_d \frac{n}{k}$?

Yes! There exist![32-35]

[32] Adam Wills, Min-Hsiu Hsieh, and Hayata Yamasaki.	←	8/14
Constant-Overhead Magic State Distillation, August 2024.		0, 1 1
arXiv:2408.07764 [quant-ph].		
[33] Louis Golowich and Venkatesan Guruswami. Asymptotically	←───	8/17
Good Quantum Codes with Transversal Non-Clifford Gates,		
August 2024. arXiv:2408.09254 [quant-ph].		
[34] Quynh T. Nguyen. Good binary quantum codes with transversal	←	8/19
CCZ gate, August 2024. arXiv:2408.10140 [quant-ph].		0, 20
[35] Thomas R. Scruby, Arthur Pesah, and Mark Webster.		
Quantum Rainbow Codes, August 2024. arXiv: 2408.13130 [quant-ph]	←	8/23 85

4. Towards large-scale quantum computer

```
Quantum Error Correction Codes & Hardware
↓
Logical Gate Implementation & Microarchitecture
↓
Domain-specific Language
↓
Compilation, Resource Analysis, and Verification
↓
Architecture
```

Summary

Hardness of braided quantum circuit optimization in the surface code

- Kunihiro Wasa, **Shin Nishio**, Koki Suetsugu, Michael Hanks, Ashley Stephens, Yu Yokoi, Kae Nemoto
- IEEE Transactions on Quantum Engineering vol. 4, pp. 1-7, 2023
- preprint: arXiv[quant-ph] 2302.00273

InQuIR: Intermediate Representation for Interconnected Quantum Computers

- Shin Nishio, Ryo Wakizaka
- preprint: arXiv[quant-ph] 2302.00267

Resource Reduction in Multiplexed High-Dimensional Quantum Reed-Solomon Codes

- Shin Nishio, Nicolò Lo Piparo, Michael Hanks, William John Munro, Kae Nemoto
- Physical Review A <u>107, 032620</u>
- preprint: <u>arXiv[quant-ph] 2206.03712</u>

Multiplexed Quantum Communication with Surface and Hypergraph Product Codes

- Shin Nishio, Nicholas Connolly, Nicolò Lo Piparo, William John Munro, Thomas Rowan Scruby, Kae Nemoto
- preprint: arXiv[quant-ph] 2406.08832

Summary

- Quantum computing systems include the classical computer systems
 - Defect braiding circuit optimization Phys. Rev. A 107, 032620
- Modular architecture may be an efficient implementation of large-scale FTQC systems
 - Multiplexing can reduce resources for communication Phys. Rev. A 107, 032620, arXiv:2406.08832
 - Formal language and intermediate representation play an important role in program optimization and analysis arXiv:2302.00267

Thank you!

CSS Code [16,17]

It is possible to define coset of C_2 about C_1 since $C_2 \subset C_1$. Especially $C_w = \{v + w | v \in C_2\}$ is a set which separates C_2 into different cosets.

 \rightarrow Each C_w can choose unique set of $k_1 - k_2$ vectors in C_1 (Coset representative)

Suppose v is a coset representative. The $[[n, k_1 - k_2]]$ codeword is given as

$$|v\rangle = \frac{1}{\sqrt{2_2^k}} \sum_{w \in C_2} |w + v\rangle$$

[16] A. Robert Calderbank, and Peter W. Shor. "Good quantum error-correcting codes exist." *Physical Review A* 54.2 (1996): 1098.
[17] Andrew Steane, "Multiple-particle interference and quantum error correction." *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 452.1954 (1996): 2551-2577.

Introduction to QRS : Galois Field

Galois Field is a field with finite number of elements. Addition /Multiplication for the element of GF(p) is defined as modulo p addition/multiplication where p is a prime number

e.g. $GF(5) = \{0, \alpha, \alpha^2, \alpha^3, 1\}$ Suppose $\alpha = 2$, then $GF(5) = \{0, 2, 4, 3, 1\}$

+	0	2	4	3	1
0	0	2	4	3	1
2	2	4	1	0	3
4	4	1	3	2	0
3	3	0	2	1	4
1	1	3	0	4	2

×	0	2	4	3	1
0	0	0	0	0	0
2	0	4	3	1	2
4	0	3	1	2	4
3	0	1	2	4	3
1	0	2	4	3	1

It is possible to define Galois extension $GF(p^k)$ by using minimal polynomial (monic k-dim polynomial of GF(p)).

The root of the minimal polynomial is called primitive element and denote it by α .

e.g.
$$GF(2) = \{0,1\}$$

 $GF(2^2) = \{0,1,\alpha,\alpha^2\}$
 $f(x) = x^2 + x + 1$ minimal polynomial

+	0	1	α	α^2
0	0	1	α	α^2
1	1	0	α^2	α
α	α	α^2	0	1
α^2	α^2	α	1	0

×	0	1	α	α^2
0	0	0	0	0
1	0	1	α	α^2
α	0	α	α^2	1
α^2	0	α^2	1	α

Appendix: SUM Gate for d = 5

Modulo part

do nothing for	check if (activate anscillae)
$0 \equiv 0 \bmod 5$	$5 \equiv 0 \mod 5$
$1 \equiv 1 \mod 5$	$6 \equiv 1 \mod 5$
$2 \equiv 2 \mod 5$	$7 \equiv 2 \mod 5$
$3 \equiv 3 \mod 5$	$8 \equiv 3 \mod 5$
$4 \equiv 4 \mod 5$	

Appendix: Implementation of SUM gate

Appendix: $GF(2^m)$ QRS Code

- Required gates for $GF(2^m)$ QRS code can be implemented using only CX gates
- A more efficient way to implement this using Toffoli has not been found.

```
e.g. GF(4)

GF(4) = \{0, 1, \alpha, \alpha^2\} = \{0, 1, \alpha, \alpha + 1\} = \{00, 01, 10, 11\}

exponential polynomial vector

x^2 + x + 1 = 0

primitive polynomial
```

Required gates

e.g. $GF(2^m)$ QRS Code: $[[3,1,3]]_5$ code

$$C_1 = [3, 2, 2]_4 \ C_2 = [3, 1, 3]_4$$

generator matrix and parity check matrix

$$g(x) = (x-1)(x-\alpha) = x^2 + (1+\alpha)x + (\alpha)$$
$$G = \begin{pmatrix} 1 & 0 & \alpha \\ 0 & 1 & \alpha^2 \end{pmatrix} \qquad H = \begin{pmatrix} \alpha & \alpha^2 & 1 \end{pmatrix}$$

Appendix: Stabilizer Codes

- Efficient encoding circuit for general stabilizer codes require many controlled gates with multi-targets[19].
- Cannot apply our method directly

[19] Cleve, Richard, and Daniel Gottesman. "Efficient computations of encodings for quantum error correction." *Physical Review A* 56.1 (1997): 76.

Other Applications

Discrete time quantum walk algorithm[15]

DTQW on a graph[16]

[15] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Physical Review A, 48(2):1687, 1993.

[16] B. Douglas and J. Wang. Efficient quantum circuit implementation of quantum walks. Physical Review A, 79(5):052335, 2009.

Other Applications

Grover's search[17]

Circuit Implementation [18]

repeat $O(\sqrt{n})$ times

[17] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty- eighth annual ACM symposium on Theory of com- puting, pages 212–219, 1996.

[18] C. Lavor, L. Manssur, and R. Portugal. Grover's al-gorithm: Quantum database search. arXiv preprint quant-ph/0301079, 2003.

Applying CX gates remotely in InQuIR

Applying CX gates remotely in InQuIR

Apply a remote CX gate to (Q_0, Q'_0) by consuming the entangle pair (Q_2, Q'_2) , where Q_0 is a control qubit

This procedure does not change the position of data qubits

Applying CX gates remotely in InQuIR

Appendix

Algorithm 1: Strategy iv random +
threshold
Input: $P = \{n_i\}$ (the set of photons)
where initially $p_i = \{\emptyset\}$ (the set of
gubits to be encoded in the i^{th}
photon) $Q = \{a_i\}$ (the list of all
physical cubits in the code) and
the number m of cubits in a single
the number <i>m</i> of qubits in a single
photon. Output: $D = \{n_i\}$ (set of set of subits in
Output: $P = \{p_i\}$ (set of set of qubits in
i ^{on} photon).
1 Initialize the threshold with $T := \frac{a}{2} - 1;$
2 for photon $p_i \in P$ do
3 Pick a qubit $q_j \in Q$ randomly.;
4 Move q_j from Q to p_i ;
5 while $ p_i < m$ do
6 while $ p_i < m \text{ and } Q \neq \emptyset$ do
7 Pick a candidate qubit $q_k \in Q$
randomly;
8 if q_k has minimum distance
greater than T from all the
qubits in p_i then
9 Move q_k from Q to p_i ;
10 else
11 Move q_k from Q to a waiting
list Q';
12 Move all qubits in Q' to Q ;
13 Update $T := T - 1;$
14 Return P;

Appendix

Algorithm 2: Peeling Algorithm

Input: A code $Ker(H)$ with Tanner
graph G , a set of erased bits E ,
and a syndrome vector s .
Output: A predicted error $\hat{e} \subseteq E$ such
that $H\hat{e} = s$, or Failure .
1 Initialize $\hat{e} = \emptyset;$
2 while $E \neq \emptyset$ do
3 Compute erasure subgraph $G_E \subseteq G$;
4 if \exists dangling check $s_i \in G_E$ then
5 if s_i is unsatisfied then
6 Error on adjacent bit $b_j \in E$;
7 Flip bit b_j , update syndrome s ;
$\mathbf{s} \text{Update } \hat{e} := \hat{e} \cup \{b_j\};$
9 else
10 No error on adjacent bit b_j ;
11 Update $E := E \setminus \{b_j\};$
12 else
13 Return Failure;
14 Return \hat{e} ;

Appendix

Algorithm 3: Strategy iii. sudoku
Input: $P = \{p_i\}$ (the set of photons,
where p_i is the set of qubits in
photon i), $Q = \{q_j = (r_j, c_j, b_j)\}$
(a list of 3-tuples with the row,
column, and block of each physical
qubit in the HGP code), and the
number m of qubits per photon.
Output: $P = \{p_i\}$ (photon assignments).
1 for photon $p_i \in P$ do
2 Pick a qubit $q_j \in Q$ randomly;
3 Move q_j from Q to p_i ;
4 while $ p_i < m \text{ and } Q \neq \emptyset $ do
5 Pick a candidate qubit $q_k \in Q$;
6 if q_k is in a different row and
column (or block) from each
previously selected $q_j \in p_i$
$((r_k \neq r_j \text{ and } c_k \neq c_j) \text{ or } b_k \neq b_j)$
then
7 Move q_k from Q to p_i ;
8 else
9 Move q_k from Q to a temporary
waiting list Q' ;
10 Move all qubits in Q' back to Q ;
11 while $ p_i < m$ do
12 Pick a qubit $q_k \in Q$ randomly;
13 Move q_k from Q to p_i ;
14 Return P ;

Algorithm 4: Strategy v. diagonalInput: $P = \{p_i\}$ (the set of photons
where p_i is the set of qubits in
photon i), $Q = \{q_j\}$ (a list of
physical qubits ordered along the
diagonal), and the number m of
qubits per photon.Output: $P = \{p_i\}$ (photon assignments).1 for photon $p_i \in P$ do2for qubits with indices
 $j \in \{im, \dots, (i+1)m\}$ do3Move q_j from Q to p_i 4 return P;